
CTF Crypto
Kanav

Feeling of Randomness

● Plaintext is always something we might know about, some pattern. i.e - for
two messages m1, m2 - P(m1) != P(m2). For example, if we toss a coin -
P(“heads”) = ½, P(“tails”) = ½ P(“hello world”) = 0

● But Ciphertext is generally random.
● But this probabilistic disparity in plaintext sometimes leads to breaking of

complete cipher.

Must have tools

1. Python - both 2 and 3
a. 2 is used when you know you have supported software and need simplicity
b. 3 when need to integrate shit code from internet
c. Pro tip: Always refer internet when converting bytearray, bytes and string.
d. Install pwntools in both
e. Install pycrypto

2. Sage Math
a. Optional, never used personally
b. Scar uses and solving group theory and ecc things is very easy using sagemath

3. A habit of backing up multiple times
a. Things take time to generate in crypto, good to print everything out or even better write to file

as well.

Terminology

1. Symmetric Encryption

E(m, k) = c D(c, k) = m

2. Asymmetric Encryption

Keygen() = pub, priv E(m, pub) = c D(c, priv) = m

3. Cryptographic Hashing

H(m) = h h -> m not possible

4. Signing

Keygen() = pub, priv Sign(m, priv) = s Verify(m, s, pub) = t/f

pwntools

● Interacting with programs hosted with nc (nc is just like running terminal
programs, running on remote computer)

>>> conn = remote('ftp.ubuntu.com',21)
>>> conn.recvline() # doctest: +ELLIPSIS
b'220 ...'

>>> conn.send(b'USER anonymous\r\n')
>>> conn.recvuntil(b' ', drop=True)
b'331'

>>> conn.recvline()
b'Please specify the password.\r\n'

>>> conn.close()

Classical Ciphers

● Substitution Cipher
○ divide the data into blocks, run a deterministic function on it, concatenate all result blocks
○ Attack - Frequency analysis attack

● Single byte Xor Cipher
○ ct[i] = p[i] ^ k
○ Attack - Frequency analysis attack

● Multibyte Xor Cipher
○ k = m-byte key, ct[i] = p[i] ^ k[i % m]
○ Take 1st, (m + 1)th, (2m+1)th…. Byte, concatenate, run single byte xor cipher breaker on it
○ Xortool

AES

● AES is a block cipher. It converts 128 bit (16 bytes) of plaintext into 128 bit or
ciphertext using a key. It has three variants depending on key size. Bigger
keysize means better security (debatable). AES-128, AES-196 and AES-256

● No need to know what’s inside it. For CTF purposes, assume that without key,
you cannot encrypt/decrypt.

● As it only encrypts 128 bits, we developed some tricks to encrypt arbitrary
length plaintexts called block modes.

● Note: Block modes are not limited to AES, but for any block cipher.

ECB Mode

ECB Mode Security Problem - Non Diffusion

Assume block size is 8 bit

ECB(“A”) = “X”

ECB(“B”) = “Y”

ECB(“ABBA”) = “XYYX”

Simple Substitution Cipher if the key is
fixed.

Assignment: Make the penguin on the
right using PIL and AES.

CTR Mode

CTR Mode Security Problems

1. 1 p/c pair means game over
● CTR Mode is like XOR cipher
● X = CTR(key)
● C = P ^ X
● If you have P1, C1, X = C1 ^ P1
● If you get C2, P2 = C2 ^ X

2. Bit flipping
● P = C ^ X => P ^ 1 = (C ^ 1) ^ X

CBC Mode

CBC Mode Security Problem - Bitflipping

Padding

● Not all data is of size of multiple of 16 bytes.
● CTR Mode doesn’t need padding. (Why?)
● CBC and ECB need padding to be multiple of 16.
● Padding should be such that it is reversible.
● Pad(m) => mp, Unpad(mp) => m, Size(mp) = 16k
● Standard Algo -

○ Size = 16k + r, pad the byte (16-r), (16-r) times

Padding Security Problems - Padding Oracle Attack

● Programs might behave unexpectedly when they receive an invalidly padded
data and pass them to unpad.

●

RSA Primer

N = p * q => public key

phi(N) = (p - 1) * (q - 1) => cannot calculate without p and q individually

phi - euler totient function

a ^ phi(N) mod N = a mod N => fermat’s theorem

(m ^ e) ^ d mod N = m mod N => e*d = 1 mod phi

Enc(m) = m ^ e mod N Dec(c) = c ^ d mod N

Popular RSA Attacks
Observation Attack

p and q too close (or any linear relation
between the two)

p = sqrt(N) then start increasing until p | N (or solve the
equation)

size(m) * e < size(N) m = c ^ (1/e) in normal arithmetic (use binary search)

same message m, same e, but e public
keys Ni

Use chinese remainder theorem to calculate c = M^e (mod
N1*N2*....Ne), then m = c^(1/e) in normal arithmetic

multiple Ns Try pairwise GCD on all Ni

blinding

Server decrypts and calculates LSB LSB Attack

Always try to limit the private key as much as possible!

Shamir Secret Sharing

(n, t) - secret sharing techniques - (Split, Reconstruct)

Split(secret) = s1, s2, s3….sn

Reconstruct(s1, s2, … st) = secret (or any t of the n splits)

Shamir - make a random polynomial (p) with constant = secret, of degree (t - 1)

s1 = (1, p(1)), s2 = (2, p(2)) …, we can reconstruct a polynomial with any of
degree + 1 = t points

Discrete Logarithm Problem

a^x = b => x = loga(b)

In normal arithmetic (i.e. Z or N) x is easy to calculate given a and b - as log is an
increasing function. We can run binary search.

But in discrete settings, things are not easy. (as we saw in RSA)

Diffie Hellman Key Exchange - two people on internet, want to generate a
common number only known to these two people.

 Party 1 - make a random a, random g, send (g, g^a mod N) to second person

 Party 2 - make a random b, key = (g^a mod N) ^ b mod N, send g^b mod N to 1

 Party 1 - key = (g^b mod N) ^ a mod N

ECC - Elliptic Curve Group in Discrete Logarithm

● y^2 = x^3 + ax + b
● Points on this curve make an element on group, zero point on infinity
● Point Addition (P + Q) - connect two points, extend line, where line intersects

again, take reflection along x axis, that point is your result
● Point Addition with same point (P + P) - tangent instead of line
● Scalar Multiplication (sP) = add s times
● given P and Q, finding s such that sP = Q is hard

Challenges -
https://github.com/kanav99/csaw19-quals-writeup/tree/master/brillouin-crypto-500

https://github.com/kanav99/csaw19-quals-writeup/tree/master/brillouin-crypto-500

Name contains hints

sss - shamir secret sharing

lowe - small e

Further Reading

1. CRIME Attack
2. Smart’s Attack
3. Learn to use openssl (or maybe during ctf?)

